Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection.
نویسندگان
چکیده
Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobial infections is Pseudomonas aeruginosa, a Gram-negative bacterium that displays enhanced virulence during coculture with Gram-positive bacteria. In this study we discovered that during coinfection, P. aeruginosa uses peptidoglycan shed by Gram-positive bacteria as a cue to stimulate production of multiple extracellular factors that possess lytic activity against prokaryotic and eukaryotic cells. Consequently, P. aeruginosa displays enhanced virulence in a Drosophila model of infection when cocultured with Gram-positive bacteria. Inactivation of a gene (PA0601) required for peptidoglycan sensing mitigated this phenotype. Using Drosophila and murine models of infection, we also show that peptidoglycan sensing results in P. aeruginosa-mediated reduction in the Gram-positive flora in the infection site. Our data suggest that P. aeruginosa has evolved a mechanism to survey the microbial community and respond to Gram-positive produced peptidoglycan through production of antimicrobials and toxins that not only modify the composition of the community but also enhance host killing. Additionally, our results suggest that therapeutic strategies targeting Gram-positive bacteria might be a viable approach for reducing the severity of P. aeruginosa polymicrobial infections.
منابع مشابه
Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection
Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in incr...
متن کاملEvolution of Bacterial “Frenemies”
Chronic polymicrobial infections are associated with increased virulence compared to monospecies infections. However, our understanding of microbial dynamics during polymicrobial infection is limited. A recent study by Limoli and colleagues (D. H. Limoli, G. B. Whitfield, T. Kitao, M. L. Ivey, M. R. Davis, Jr., et al., mBio 8:e00186-17, 2017, https://doi.org/10.1128/mBio.00186-17) provides insi...
متن کاملIron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa.
UNLABELLED Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alky...
متن کاملOral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa.
The oral cavity harbors a diverse community of microbes that are physiologically unique. Oral microbes that exist in this polymicrobial environment can be pathogenic or beneficial to the host. Numerous oral microbes contribute to the formation of dental caries and periodontitis; however, there is little understanding of the role these microbes play in systemic infections. There is mounting evid...
متن کاملSynergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model.
In individuals with polymicrobial infections, microbes often display synergistic interactions that can enhance their colonization, virulence, or persistence. One of the most prevalent types of polymicrobial infection occurs in chronic wounds, where Pseudomonas aeruginosa and Staphylococcus aureus are the two most common causes. Although they are the most commonly associated microbial species in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 3 شماره
صفحات -
تاریخ انتشار 2013